High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface.

نویسندگان

  • Elena Stolyarova
  • Kwang Taeg Rim
  • Sunmin Ryu
  • Janina Maultzsch
  • Philip Kim
  • Louis E Brus
  • Tony F Heinz
  • Mark S Hybertsen
  • George W Flynn
چکیده

We present scanning tunneling microscopy (STM) images of single-layer graphene crystals examined under ultrahigh vacuum conditions. The samples, with lateral dimensions on the micrometer scale, were prepared on a silicon dioxide surface by direct exfoliation of crystalline graphite. The single-layer films were identified by using Raman spectroscopy. Topographic images of single-layer samples display the honeycomb structure expected for the full hexagonal symmetry of an isolated graphene monolayer. The absence of observable defects in the STM images is indicative of the high quality of these films. Crystals composed of a few layers of graphene also were examined. They exhibited dramatically different STM topography, displaying the reduced threefold symmetry characteristic of the surface of bulk graphite.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomic structure of graphene on SiO2.

We employ scanning probe microscopy to reveal atomic structures and nanoscale morphology of graphene-based electronic devices (i.e., a graphene sheet supported by an insulating silicon dioxide substrate) for the first time. Atomic resolution scanning tunneling microscopy images reveal the presence of a strong spatially dependent perturbation, which breaks the hexagonal lattice symmetry of the g...

متن کامل

Regular Paper In Situ Study on Oxygen Etching of Surface Buffer Layer on SiC(0001) Terraces

Thermal decomposition of SiC has been used for the fabrication of high quality monolayer graphene and graphene nanoribbons on semi-insulating substrates. In this work, we propose a selective oxygen etching method to remove buffer layers on SiC surfaces that are connected to monolayer graphene formed from step edges. A thermal treatment in an extreme low partial pressure oxygen diluted by argon ...

متن کامل

Switching Behaviors of Graphene-Boron Nitride Nanotube Heterojunctions

High electron mobility of graphene has enabled their application in high-frequency analogue devices but their gapless nature has hindered their use in digital switches. In contrast, the structural analogous, h-BN sheets and BN nanotubes (BNNTs) are wide band gap insulators. Here we show that the growth of electrically insulating BNNTs on graphene can enable the use of graphene as effective digi...

متن کامل

Playing peekaboo with graphene oxide: a scanning electrochemical microscopy investigation.

Scanning electrochemical microscopy (SECM) can image graphene oxide (GO) flakes on insulating and conducting substrates. The contrast between GO and the substrate is controlled by the electrostatic interactions that are established between the charges of the molecular redox mediator and the charges present in the sheet/substrate. SECM also allows quantitative measurement - at the nano/microscal...

متن کامل

Nanoscale synthesis and characterization of graphene-based objects.

Graphene-based nano-objects such as nanotrenches, nanowires, nanobelts and nanoscale superstructures have been grown by surface segregation and precipitation on carbon-doped mono- and polycrystalline nickel substrates in ultrahigh vacuum. The dominant morphologies of the nano-objects were nanowire and nanosheet. Nucleation of graphene sheets occurred at surface defects such as step edges and re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 22  شماره 

صفحات  -

تاریخ انتشار 2007